
The Holmes Platform

and Applications

Luxembourg, 2017

The Vision

Don’t re-invent, Reuse

Follow Open

 Standards

Define your Processes

Keep it
Simple

Process Automation

Flexible

 Software

The Product

The Holmes Platform

Application Development Framework

 designed to develop Enterprise Apps.

Productivity is enchanced thanks to a

development and execution framework

covering the common layers of the

enterprise application’s design

data access | business logic | integration | ui

The Holmes Platform

data access | business logic | integration | ui

¿What does Holmes offer?
• Reduction of the development effort.

• Reduction of the development time for simple frequent changes of

information systems, such as data model extensions.

• A standard architecture and a development methodology acting as a

foundation for the development of enterprise applications.

• Based on Open Source products, Holmes aims to reduce the

Total Cost of Ownership (TCO) of the solution, when compared to

other customizable systems.

The Holmes Platform

data access | business logic | integration | ui

¿How is it achieved?
• Clean separation between platform and application.

Result 

 Plataform Independent from Data Model and Business Logic

• User interface independent from data model

• Generic forms are generated automatically

• Still, it is possible to design customized forms.

• User interface independent from business logic

• MVC interface based on events and delegates.

The platform offers the API and runtime environment to develop

and execute the resulting application.

Data Access
• The Data Access layer is the API to access the database.

• Whenever you change the database schema, the Data Access layer

rebuilds the object model, which holds the metadata (information

about tables, views, relationships). The schema changes are auto-

discovered and cached locally and stored in the system tables.

• The Data Access API (OLAPI) has the following features:

• It is independent from the database schema

• It is “cloud-ready” which means that it is suitable for mobile applications,

access through internet and firewalls.

• It is designed with performance and scalability in mind.

• It is multi-platform and based in open standards (JDBC, JavaBeans, XML

serialization and Java EE).

• The SQL API generates the SQL code dynamically.

• Supported configuration: MySQL / JBoss/Wildfly

Data Access

data access | business logic | integration | ui

Business Logic

data access | business logic | integration | ui

Business Logic
• Every user action becomes an Event that is managed through a

Controller. The events are classified into Data, Business, UI and

Remote categories.

• The Data events are handled by a delegate class that performs a

database query to either select or update the focus object associated

to the event.

• The Business events are those events that require a specific behavior

dependent on the object type. A simple plug-in based on the class

name is devised so that you can add behavior when an event to

select or update event is processed. Moreover, the Controller can be

extended to pre-process or post-process the events.

• The Remote events are only available in the 3-layer setup. These

events are sent to a Web Service to be handled in the server side.

• Presentation logic is triggered by UI events.

Integration

data access | business logic | integration | ui

Integration
• The 3-layer setup is based on the Java EE architecture which is a

widely used industry-standard for building enterprise applications.

• Externally, the SOAP & REST WS is also a open standard defined by

the W3C, implemented by most software vendors (Microsoft, Sun,

BEA, IBM…)

• E-Mail, LDAP, JTAPI integration is implemented out of the box.

• The Business Logic & Data Access API enable to build programs that

can be scheduled run in the background (batches, daemons) for

integration and backoffice purposes.

• The client-side can be extended to integrate with external services.

• The client is integrated with the operating system using the third-party

product Java Desktop to provide file type-association features, web

browser, etc.

User Interface

data access | business logic | integration | ui

User Interface
• The application client is the user interface. Two setups are possible, for small-

office applications a DB client connects directly with a database server, while

in the large scale setup the Enterprise client connects to a Web Service/J2EE

server.

• The client obtains from the Data Access layer the necessary information to

build up a default, generic forms to create, select or edit the records of your

database.

• Basic customization does not require programming. The following features can

be customized, through the application, without programming:

• Menus, Lists, Multi-language labelling, Related-info tabs…

• The 3-layer architecture client enables client to connect through internet and

firewalls and enables horizontal scalability.

• Multi-platform (works on Microsoft / Linux / Sun…)

• Plug-in architecture. You can override at form-level and even the internal

event controller to define your own events and delegate.

SQL
DB

Driver

Common

Library

Object Model

Holmes Architecture

Business Logic

EJB / WS

J2EE Server

HTTP / WS

Client

LAN

Client

SQL Object API

No SQL embedded

nor parsing

Data Model

Schema Discovery

High-level Data

Access API

Auto-generated

Configurable

Extendable

User Interface

Event-driven

Business Logic

 J2EE / Web

Service Arch for

Enterprise-Class

Deployments

Platform Requirements

• Database Server

MySQL 5

• Application Server

Wildfly 10

• Multi-plataform

Java 8 / Java EE 7

S.O. Windows, Linux, Solaris, HP-UX…

Holmes Applications

The Holmes Applications are application

modules, customizable, covering the following

functional areas of Customer Relationship

Management:

 Call Center

 Support

 Sales

 Product Catalogue

 Billing

T h a n k s . . .

